

DATA SHEET 24

Handraulic001/1 07/07

ENGINE CRANKING SPEED CALCULATION

- 1. To establish the viability of a proposed Starter application to an unknown engine or plant it is necessary to establish the theoretical cranking speed generated by the starter unit.
- 2. To calculate the cranking speed, certain information is required from the engine manufacturer and or plant manufacturer.
- 3. Calculations must be based on values applicable at the minimum plant operating temperature.
- 4. The engine breakaway torque must be less that the torque output of the starting system.
- 5. It must be assumed that the engine will have the correct grade of lube oil and fuel and be generally to the manufacturer's specifications.
- From tests and visual observation it is assumed that the average time taken to complete the starter power 6. stroke will be:

Starting time	Starting system	@ 293 Bar (4250 PSI)	@345 Bar (5000 PSI)
6.1	B35G	0.16 seconds	0.12 seconds
6.2	B50G	0.30 seconds	0.24 seconds

7. Torque output of the starter is:

Output torque	Starting system	@ 293 Bar (4250 PSI)	@345 Bar (5000 PSI)
7.1	B35G	773 Nm	909 Nm
7.2	B50G	2264 Nm	2663 Nm

8. Formula for calculating the cranking speed is:

where: T1 = Starter torque (Nm) T2 = Engine cranking torque (Nm) L = Inertial moment of plant (kg.m²) С = Constant = (Time x 60) 2π

- = B35G = 1.528 (@ 293 Bar) or 1.146 (@ 345 Bar)
- = B50G = 2.865 (@ 293 Bar) or 2.196 (@ 345 Bar)

© 2007 Prestolite Electric Ltd www.prestolite.com Unit 48. The Metropolitan Park 12-16 Bristol Road, Greenford Middlesex UB6 8UP Tel: +44 (0)20 8231 1000 email: eu_info@prestolite.com

THE POWER OF EXCELLENCE

DATA SHEET 25 CONTINUED....

Handraulic001/2_07/07

- 9. Where the breakaway and cranking torque are not known for the particular operating temperature required, as a useful guide, it may be assumed that:
 - 9.1 Breakaway torques will increase by 1 Nm / Cyl / 1°C drop.
 - 9.2 Cranking torques will increase by 0.333 Nm / Cyl / 1° drop.
- 10. Conversions:
 - 10.1 lbs/ft x 1.356 = Nm
 - 10.2 lbs.ft² x 0.04214 = Kg.m²

EXAMPLE

MTU 6V396 ENGINE WITH GENERATOR

1.1	Operating temperature	e = +17°	°C
1.2	Breakaway torque at a at ⁻	40°C 17°C	= 300 Nm = 300 + (23 x 1 x 6) = 438 Nm
1.3	Cranking torque at 40 at 17		= 280 Nm = 280 + (23 x 0.333 x 6) = 326 Nm
1.4	Inertial moment Engine Coupling Generator	= 5.69 = 5.00 = 56.1 = 66.8	(max)

- 1.5 Engine firing speed = 110 120 RPM
- 1.6 Constant (B50G) = 2.865
- 2. Cranking speed at 293 Bar working pressure

This is below the firing speed, therefore, a B50G application will not be viable.

© 2007 Prestolite Electric Ltd www.prestolite.com Unit 48, The Metropolitan Park 12-16 Bristol Road, Greenford Middlesex UB6 8UP Tel: +44 (0)20 8231 1000 email: eu_info@prestolite.com

THE POWER OF EXCELLENCE

DATA SHEET 25 CONTINUED....

Handraulic001/3_07/07

ENGINE CRANKING SPEED CALCULATIONS

(Refer Data sheet 24)

MANUFACTURER	PLANT	
ENGINE TYPE	NO. of CYLINDERS	
BORE		
FIRING SPEED	RPM	
MIN OPERATING TEMP	°C	
BREAKAWAY TORQUE	lbs/ft	Nm
T2 CRANKING TORQUE	lbs/ft	Nm
INERTIAL MOMENT		
ENGINE	lbs.ft ²	kg.m²
FLYWHEEL / COUPLING	lbs.ft ²	kg.m²
PLANT	lbs.ft ²	kg.m²
	 lbs.ft ²	kg.m²
TOTAL	lbs.ft ²	kg.m²

T1 (B35G) = 773 Nm C = 1.528 NOTE: T1 (B50G) = 2264 Nm = 2.865 С lbs/ft x 1.356 = Nm lbs/ft² x 0.04214 = kg.m² $= \frac{(T1 - T2) \times C}{I}$ = RPM =

© 2007 Prestolite Electric Ltd www.prestolite.com Unit 48, The Metropolitan Park 12-16 Bristol Road, Greenford Middlesex UB6 8UP Tel: +44 (0)20 8231 1000 email: eu_info@prestolite.com

THE POWER OF EXCELLENCE